Collisional and Rotational Disruption of Asteroids

نویسندگان

  • Kevin J. Walsh
  • Derek C. Richardson
چکیده

Asteroids are leftover pieces from the era of planet formation that help us understand conditions in the early Solar System. Unlike larger planetary bodies that were subject to global thermal modification during and subsequent to their formation, these small bodies have kept at least some unmodified primordial material from the solar nebula. However, the structural properties of asteroids have been modified considerably since their formation. Thus, we can find among them a great variety of physical configurations and dynamical histories. In fact, with only a few possible exceptions, all asteroids have been modified or completely disrupted many times during the age of the Solar System. This picture is supported by data from space mission encounters with asteroids that show much diversity of shape, bulk density, surface morphology, and other features. Moreover, the gravitational attraction of these bodies is so small that some physical processes occur in a manner far removed from our common experience on Earth. Thus, each visit to a small body has generated as many questions as it has answered. In this review we discuss the current state of research into asteroid disruption processes, focusing on collisional and rotational mechanisms. We find that recent advances in modeling catastrophic disruption by collisions have provided important insights into asteroid internal structures and a deeper understanding of asteroid families. Rotational disruption, by tidal encounters or thermal effects, is responsible for altering many smaller asteroids, and is at the origin of many binary asteroids and oddly shaped bodies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulations of asteroids modelled as gravitational aggregates with cohesion

Evidence is mounting that asteroids larger than a few hundred metres in diameter are gravitational aggregates of smaller, cohesive pieces. For example, images of 25143 Itokawa show a boulder-strewn surface reminiscent of what might be expected following gravitational reaccumulation of material ejected from a catastrophic impact into a larger body. We have developed a new numerical approach to m...

متن کامل

Meteorite Evidence for the Accretion and Collisional Evolution of Asteroids

Meteorites contain a record of impacts during all stages of asteroid origin and evolution: the formation and accretion of chondritic particles; the alteration, metamorphism and melting of asteroids; and the erosion and disruption of asteroids by hypervelocity impacts. A review of meteorite classification shows that numerous meteorites are not readily classified because they do not fit simple mo...

متن کامل

Analysis of the Rotational Properties of Kuiper Belt Objects

We use optical data on 10 Kuiper Belt objects (KBOs) to investigate their rotational properties. Of the 10, three (30%) exhibit light variations with amplitude ∆m ≥ 0.15mag, and 1 out of 10 (10%) has ∆m ≥ 0.40mag, which is in good agreement with previous surveys. These data, in combination with the existing database, are used to discuss the rotational periods, shapes, and densities of Kuiper Be...

متن کامل

Catastrophic disruption of asteroids and family formation: a review of numerical simulations including both fragmentation and gravitational reaccumulations

In the last few years, thanks to the development of sophisticated numerical codes, a major breakthrough has been achieved in our understanding of the processes involved in small body collisions. In this review, we summarize the most recent results provided by numerical simulations, accounting for both the fragmentation of an asteroid and the gravitational interactions of the generated fragments...

متن کامل

Collisions and gravitational reaccumulation: forming asteroid families and satellites.

Numerical simulations of the collisional disruption of large asteroids show that although the parent body is totally shattered, subsequent gravitational reaccumulation leads to the formation of an entire family of large and small objects with dynamical properties similar to those of the parent body. Simulations were performed in two different collisional regimes representative of asteroid famil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011